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Gravity-Driven Groundwater Flow and Slope Failure Potential

1. Elastic Effective-Stress Model

RICHARD M. IVERSON AND MARK E. REID!
U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington

Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent
distribution of effective stress in shallow subsurface enviconments. Effective stress, in turn, influences
the potential for slope failure. To evaluate these influences, we formulate a two-dimensional. steady
state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and
they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We
implement the model using two finite element codes. As an illustrative case, we calculate the
groundwater flow field, total body force field, and effective stress field in a straight, homogeneous
hillslope. The total body force and effective stress fields show that groundwater flow can influence
shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow
significantly increases the Coulomb failure potential @, which we define as the ratio of maximum shear
stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure
potential toward the slope toe. However, the effects of groundwater flow on failure potential are less
pronounced than might be anticipated on the basis of a simpler, one-dimenstonal, limit equilibrium
analysis. This is a consequence of continuity, compatibility, and boundary constraints on the
two-dimensional flow and stress fields, and it points to important differences between our elastic

continuum model and limit equilibrium models commonly used to assess slope stability.

INTRODUCTION

The gravitational attraction of the Earth drives both
groundwater movement and deformation in many rocks and
soils. A direct consequence of this gravitational attraction is
topographic control of groundwater flow systems and rock
or soil stresses that can lead to slope failures and some types
of crustal faulting. Although the influences of topography on
groundwater flow and subsurface stresses have been ana-
lyzed separately [e.g., Toth, 1963; Freeze and Witherspoon,
1966, 1967; Savage et al., 1985], there has been a lack of
results that show how topography simultaneously influences
groundwater flow and effective stress fields that, in turn,
influence failure potential. This lack is surprising in light of
the almost universal acceptance of Terzaghi’s [1923, 1936}
effective stress principle. Moreover, the lack has repre-
sented a missing link in the chain of principles that unite
hydrology and geomorphology.

This paper and its companion [Reid and Iverson, this
issue] provide quantitative results that show how topograph-
ically controlled groundwater flow influences the Coulomb
failure potential in hillslopes and mountain massifs. In both
papers we restrict our attention to two-dimensional, periodic
topography, which forms repetitious landscapes composed
of identical, symmetrical ridges and valleys of infinite length
(Figure 1). The landscapes are saturated with groundwater
that undergoes steady Darcian flow. Groundwater flow and
slope failure potential in such simple landscapes are scale
independent, a characteristic that is lacking if partially
saturated conditions are considered. Even for these simple
landscapes, however, the two-dimensional topography ren-
ders the effective stress field statically indeterminate. That
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is, there are more stress components than can be determined
from the equations of equilibrium alone. Consequently,
more assumptions are needed to calculate the effective stress
field and slope failure potential than in analogous one-
dimensional problems [e.g., Iverson and Major, 1986].

To overcome the problem of static indeterminacy, we
assume that rock or soil deformation prior to failure is
infinitesimal and linearly elastic. This approach differs mark-
edly from that used in conventional, limit equilibrium anal-
yses of slope stability. Such analyses do not employ a
constitutive model (such as linear elasticity) and do not
determine effective stress and deformation fields. Instead,
they determine the net forces and factor of safety along
assumed failure surfaces by making assumptions about the
forces or moments acting between vertical slices of rock or
soil [e.g., Wright et al., 1973; Nash. 1987). Here, in contrast,
we use a comprehensive mathematical model to quantify
how groundwater flow influences effective stresses and slope
failure potential; we do not assess failure surface locations or
factors of safety.

This paper begins with a brief review of the methods and
results of pertinent previous work. Then in presenting the
necessary mathematical formulation it focuses on the phys-
ical principles and assumptions embodied in our model. Our
formulation particularly emphasizes the definition of effec-
tive stress, which has been a source of some controversy
[e.g., Passman and McTigue, 1986]. We show that standard,
elastic effective stress calculations can be interpreted in the
context of a standard, Coulomb failure rule only if specific
assumptions are made. Next, we present numerical results
for an elementary two-dimensional problem, which illus-
trates how groundwater flow influences the effective stress
field and Coulomb failure potential in slopes. We contrast
these results with those from a statically determinate, one-
dimensional limit equilibrium calculation for a similar slope,
and we discuss the implications and limitations of our

findings. In the companion paper [Reid and Iverson, this
issue] we consider more complicated problems and their
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Fig. 1. Schematic block diagram of an infinitely extensive land-
scape with periodic topography. Streamlines show paths of gravity-
driven groundwater flow.

geomorphological implications; we present numerical results
for hillslopes with diverse shapes, material properties, and
hydraulic heterogeneities.

RELATED WORK

Many investigators have examined the influence of topog-
raphy on steady, gravity-driven groundwater flow fields.
One modeling approach assumes that the water table mimics
topography. Two-dimensional analytical and numerical so-
lutions using this approach show that recharge areas with
hydraulic gradients directed downward occur in topograph-
ically higher regions, whereas discharge areas occur in lower
regions [Toth, 1963; Freeze and Witherspoon, 1966, 1967]. A
more sophisticated approach treats the water table as a free
surface that can vary with changes in flow system charac-
teristics, such as hydraulic conductivity or infiltration rate.
Forster and Smith [1988a, b] used this approach to simulate
steady groundwater flow in mountainous terrain, where the
water table might not correspond with the ground surface.
However, their numerical solutions indicate that in humid
climates the water table is at or near the ground surface.

Other workers have noted that realistic groundwater flow
fields can strongly influence the potential for slope instability
determined by conventional limit equilibrium methods [e.g.,
Hodge and Freeze, 1977; Rulon and Freeze, 1985] as well as
instability observed in the field [e.g., Patron and Hendron,
1974; Iverson and Major, 1987, Reid et al., 1988]. The
statically determinate infinite slope analysis of fverson and
Major [1986] showed how both the direction and magnitude
of groundwater hydraulic gradients influence the poteatial
for instability.

The gravitational state of stress induced by topography
has also attracted the interest of numerous investigators.
Many have used a linearly elastic constitutive assumption to
model the stress state in dry earth materials that experience
a uniform gravitational body force. A variety of two-
dimensional analytical solutions [e.g., Perloff et al., 1967;
McTigue and Mei, 1981; Silvestri and Tabib, 1983a, b;
Savage et al., 1985} and numerical solutions fe.g., Duncan
and Dunlop, 1969; Phukan et al., 1970; Hoyaux and Landa-
nyi, 1972; Sturgul et al., 1976] to static boundary value
problems have been presented. These solutions clearly show
that both the magnitude and orientation of stresses in hill-
slopes are affected by topography.

Other workers have used the assumption of linear elastic-
ity to examine two-dimensional effective stress fields in
saturated materials in which both solids and fluids experi-

ence eravitational bodv forces, In time-dependent problems,
fluid flow is fully coupled with deformation [Sandhu and

Wilson, 1969; Zienkiewicz et al., 1977). With steady state
groundwater flow and static stresses the flow field is decou-
pled from deformation (Appendix A}, and the effective stress
distribution can be calculated by using either a pore pressure
or seepage force distribution [Ter-Martirosyan and Akhpate-
lov, 1971; Zienkiewicz, 1977; Zienkiewicz et al., 1977; Louis
et al., 1977]. Results from both transient and steady flow
problems clearly demonstrate that hydraulic gradients influ-
ence the effective stress distribution. However, no previous
studies have systematically examined the effects we con-
sider here, those of gravity-driven groundwater flow con-
trolled by topography.

MATHEMATICAL FORMULATION

Beginning with Biot [1941], many authors have presented
formulations of the basic equations governing pore pres-
sures, elastic stresses, and infinitesimal strains in quasi-
static porous media with Darcian fluid flow [e.g., Serafim,
1968; Cooley, 1975; Rice and Cleary, 1976]. Here we de-
velop a simple, steady flow formulation that employs hy-
draulic head rather than pore pressure as the basic fluid
variable. This helps distinguish groundwater effects from
elastic deformation effects and reveals the importance of
spatial patterns of groundwater flow. Our governing equa-
tions also highlight the role of gravitational potential and
body forces, whereas many works on poroelasticity ignore
the gravitational potential of pore fluid, and some well-
known works, such as those of Biot [1941] and Rice and
Cleary [1976}, also omit body forces due to the weight of the
solid constituents. Although this omission may be useful in
addressing some problems, it is clearly inappropriate for
hillslopes. In our formulation we assume that the pore water
is isothermal and has a uniform density and viscosity and
that the solid porous medium is isothermal and isotropic,
both elastically and hydraulically; and we restrict our atten-
tion to plane strain and two-dimensional groundwater flow.
Extension of our formulation to three dimensions is simple,
however, and is parallel to classical, three-dimensional,
elastic equilibrium formulations [e.g., Timoshenko and
Goodier, 1970].

Displacement, Strain, and Compatibility

The most fundamental equations we use are those that
define infinitesimal strains in the solid porous medium in
terms of displacement gradients [e.g., Fung, 1965; Malvern,
1969}:

du,
Eax T T (la)
du,
£,y = — (1b)
» ay
1 (du, Ou
Eyo==|—+— (Ic)
: 2 {9y ax

Here x and y are rectangular Cartesian coordinates, «, and
u, are the components of the solid displacement in the x and
y directions, ¢,, and e,, define normal strains in these
directions, and ¢, is the shear strain in the x direction on

planes normal to y. Owing to svmmetrv of the strain tensor.
shear strains on orthogonal planes are equal: ,, = &,,.
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Equations (1a)—(1c¢) are valid regardiess of stress definitions
or material behavior, They play an important role in the
problems we consider, because boundary conditions and
governing equations are specified in terms of the solid
displacements.

Differentiating and combining (1a)~(1c¢) lead directly to a
single equation of strain compatibility, which expresses a
kinematic continuity constraint on the displacement and

strain fields [Timoshenko and Goodier, 1970, p. 29]:
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Stress Equilibrium

The equations of static, total stress equilibrium for the
solid-fluid mixture also are valid regardless of the solid or
> FRRRpS R gy e Vo 2 cmveviic smaosdizien szrsek 0.1 0O
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stresses are independent of time and the equations have the
form of the traditional Cauchy equations for a static contin-

uum f{e.g., Fung, 1965; Malvern, 1969]:

90, aayx
ennt = - 3a
dx ay Pi9x (3a)
do,, do

Yy yX
—_— = - . 3b
ay Bx ptg.\ ( )

Here o, and oy, are the total normal stresses acting on
planes normal to the x and y axes, respectively, and o, is
the shear stress acting on each of these planes. The stress
tensor, like the strain tensor, is symmetric. Normal stresses
are defined as positive in tension. The components of
gravitational acceleration in the x and y directions are g, and
gy, respectively, and p, is the bulk density of the solid-fluid
mixture.

Effective Stress

We adopt a general definition of effective stress o;:
oij=0y+ apdy; (4)

Here p is the pore water pressure, 8; is the Kronecker delta,
and / and j are indices that represent x or y. The value of the
coefficient o has been the subject of longstanding contro-
versy, dating to Terzaghi’s [1923] development of the effec-
tive stress concept. Some authors, such as Hubbert and
Rubey [1959], have attempted to prove theoretically that a =
1. Other authors have maintained that, if all strains are
elastic, it is necessary that o = 1| — K /K, where K and
K, are the elastic bulk moduli of the individual solid grains
and the solid porous medium, respectively [Nur and Byerlee,
1971]. Still others, including Terzaghi, have argued on
theoretical grounds that a should depend on the porosity or
porous structure of the solid matrix [Serafim, 1968]. Pass-
man and McTigue [1986] have developed a more compre-
hensive definition of effective stress that is consistent with
the continuum theory of mixtures. However, their definition
reduces to (4) with a = 1 if fluid flow is steady, and all
viscous energy dissipation is Darcian. For the present, we
simply adopt the effective stress definition of (4), in which

the value of a is unspecified. We later show that the values
@ — 1 ann e — 1 Nl g HIUSL UC ICCUNIICIICU TUI €rasuc
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stresses to be interpreted in the context of a Coulomb failure

mle
rule,

Effective Stress Equilibrium

Substituting (4) into (3) yields effective stress equilibrium
equations with pore pressure gradient terms that play the
role of body forces:

6U;X L ao’;'x t ap e A
P ‘f’a; =-pgeta {5a)
e JORE:T: S ap

- — = — L+ a — (5b)
ay ax Py ay

We choose the y coordinate to be directed vertically upward,
with an origin at an arbitrary horizontal datum (Figure 1).

Thus gravity acts exclusively in the negative y direction, and
we define the hydraulic head h as

h= Ty (6)

Pwd
in which p,, is the pore water density and g is the magnitude
of gravitational acceleration. Solving (6) for p and substitut-
ing into (5a) and (5b) yields effective stress equilibrium
equations that contain head gradient terms and a submerged-
unit-weight term as body forces:

8oy, Aoy, ah
=ap,g — Ta
ix 3y Pud == (7a)
doy, oy, oh
—= =(p, —apgtap,g — (7b)
dy ax ay

The submerged-unit-weight term (p, — ap,,) g represents the
hydrostatic buoyancy effects of the pore fluid, whereas the
head gradient terms represent the seepage force associated
with pore fluid flow.

Effective Stress and Elastic Strain

To determine the three unknown stress components in the
two equilibrium equations (7a) and (7b), it is necessary to
employ constitutive equations that relate stresses to strains
in the solid porous medium. We adopt the widely accepted
constitutive equations for porous elastic media that were
developed by Bior [1941]. Biot used arguments about the
strain energy in an infinitesimally deformed poroelastic body
to derive general, linear, isotropic constitutive equations in
terms of total stresses and pore pressure. Rice and Cleary
[1976] subsequently recast his equations in a form that
accounts for the compressibility of both solid and fluid
constituents in terms of conventional elastic moduli. In turn,
we have recast these equations in a form that facilitates their
comparison with a standard form of Hooke’s law for linearly
elastic behavior (Appendix B).

The Biot-type constitutive equations for total stress
(B7a)-(B7¢) reduce to standard Hooke’s-law-type equa-
tions for effective stress only if the definition a = 1 — K /K
advocated by Nur and Byerlee [1971] is adopted. In this

cveny, (4) vcconies
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Ky
U,fj=a'ij+(l—z—)p6,»j (8)
s

and standard Hooke’s law constitutive equations then result
from substitution of (8) into (B7a)-(B7c¢):

Exx = E (- VZ)O';X - vl +v)o,,] (%a)
1 2
ey =gl =wio, vl +v)or ] 95)
1+ ,
Eyx = E Tyx (9(3)

Here E is the Young's modulus and » is the drained
Poisson’s ratio of the solid porous medium. Note that, as a
consequence of (8), o}; = o;; when i # j, and shear stresses
can be regarded as either total or effective stresses. The
plane strain constraint,

(10)

o =v(ont 0"\’,).)

is implicit in (9a)-(9¢). Equations (9) and (10) are identical
to standard elasticity equations [Timoshenko and Goodier,
1970, pp. 17 and 30], except that the relevant stresses here
are effective stresses. This implies that effective stress alone
drives elastic deformation of the solid porous medium,
consistent with the ideas of Terzaghi [1936].

Equation (8) consequently represents the definition of
effective stress that is most convenient for problems involv-
ing elastic deformation of porous media. It gives effective
stress equilibrium problems the form of conventional linear-
elasticity problems, and it allows groundwater effects to
enter the formulation only through the body force terms in
the equilibrium equations [cf. Rice and Cleary, 1976]. There
is nothing exclusive or fundamentally superior, however,
about the effective stress definition given by (8). This has
been pointed out by others [Stagg and Zienkiewicz, 1968;
Cooley, 1975], with the caveat that any value of a can be
used in effective stress equilibrium calculations, as long as
total stress equilibrium is satisfied. Nevertheless, any defi-
nition of effective stress other than that of (8) produces
elastic constitutive equations that have an unconventional
form, which mixes the effects of porous medium elasticity
with those of groundwater flow.

Coulomb Failure and Effective Stress

Because we wish to assess the potential for Coulomb
failure that results from stress field modification by ground-
water flow, we must question whether the effective stress
definition of (8) is appropriate in the context of the Coulomb
failure rule. This rule is founded purely on observations,
which indicate that the effective stress definition most useful
for describing Coulomb failure of earth materials is simply
{Jaeger and Cook, 1979, p. 223]

(1

The discrepancy between this effective stress definition (11}
and that used in our poroelastic stress calculations (8) can be

eliminated if we assume that the constituent particles com-
posing the sohid porous medium are much I€ss compressibie

O'I!j'—_ a-ij+p6ij

than is the porous medium as a whole (i.e., K, << K ). Then
a = 1, and (8) is made to approximate (11). In this case,
(9a)~(9¢) remain valid and reconcilable with the Biot-type
equations (Appendix B), but the effective stresses that are
calculated using (9a)-(9c¢) can be interpreted in the context
of Coulomb failure potential. Because we adopt the assump-
tion K, << K, we restrict the generality of our formulation
somewhat, but we remove any ambiguity from our method-
ology and results.

Effective Stress Compatibility

The equation of effective stress compatibility completes
the set of equations governing the effective stress field. To
obtain this equation, we assume that the elastic moduli are
constant but that the total bulk density (which depends on
both the density of the solids and the porosity) and the
hydraulic conductivity may vary spatially. Substituting the
effective stress constitutive equations (94)—(9c¢) into the
strain compatibility equation (2) yields, after some algebraic
manipulation,

32

SF L1 = v)oy, — voy,]
2 z ’

’ I yx
+ ;9? (Q=-voy —voyl=2——

12
dxay (12)

Adopting the definition a = 1 (i.e., K, << K ), differenti-
ating (7a) with respect to x, differentiating (75) with respect
to y, and combining the resulting equations yields

2 dxdy g ax? 6y2 g ady
(13)

620';,(

ax

Adding (12) and (13) then yields the compatibility equation in
terms of effective stresses and hydraulic head gradients:

a? 2 ( 1
—+— o+ o)) =—
ax? 6)'2 “~ ) 11—

ath  a%h ap,

“|pwg ;ﬁé;g +g-a;- (14)
If the bulk density and hydraulic conductivity of the porous
medium are uniform, the right-hand side of (14) equals zero
(VZh = 0 for steady groundwater flow in a homogenous,
isotropic medium). Equation 14 then has the same form as
the conventional compatibility equation used in plane strain
elasticity [Timoshenko and Goodier, 1970, p. 31]. If the
hydraulic conductivity is nonuniform, however, (14) shows
that the groundwater flow field will influence the effective
stress field in a manner that has no direct analog in standard
elasticity problems. This leads to particularly interesting
effective stress distributions in the vicinity of hydraulic
heterogeneities [Reid and Iverson, this issue].

Groundwater Flow

The equation for steady, two-dimensional groundwater
flow is independent of the equations describing static effec-

tive stresses and infinitesimal elastic strains (Appendix A).
Lonsequently, we assume Lnat there 1S an arbirary hydrauic
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conductivity distribution, but we do not specify an explicit
relation between strains and conductivities. Thus we use the
conventional equation for steady, two-dimensional ground-
water flow in a porous medium that is hydraulically isotropic
but not necessarily homogeneous:

9 oh d dh
— | K—]|+—(K—]=0
ax dx dy dy

in which X is the scalar-valued hydraulic conductivity [cf.
Freeze and Cherry, 1979, p. 64]. We use the solution of this
equation to determine the hydraulic head gradients in (7a),
(7b), and (14).

(15)

Displacement Formulation

Combined with appropriate boundary conditions, the ef-
fective stress problem posed by (7a), (75), (14), and (15) is
mathematically complete, but a difficulty exists because the
periodic topography dictates that boundary conditions for
the solid phase must be expressed in terms of displacements
rather than stresses. Thus we recast the governing equations
in terms of displacements. First, we express the constitutive
equations in terms of displacements by substituting (l1a)-
(l¢) into (9a)—-(9¢) and manipulating the result to obtain

E ou, vE du, du, 16
[ — ) + — | —= 4+ =
Txx 1+ v \ox (1 =2v)(1 + v) \ 8x ay (16a)
E du, vE du, du,
ol = — ]t + (16b)
oo l+ v \ady (1=2v)(1 +») \ ay ox

. E duy du,
iy = + —
2(0 + v) \ 3y 0x

Substitution of (16a)-(16c) into the effective stress equilib-
rium equations (7a) and (7b) with a = 1, followed by further
algebraic manipulation, results in two equations for the two
components of displacement, u, and u,:

(16¢)

E vE E
— Vi, + +
2(l +») (1 =2v)(1L+v) 201+ v)
olu, o’u, 3 17a)
. + =
ax? dydx g ax (17a
E vE E
—_— Vzuy +
2(1 + v) (1=-2v)(1+v) 2(1+ )
azu‘. a%u, ( | ah (176)
. LA = -pJg+p.9—
ayz xdy Pe=Pwlg T P9 3y

The coefficient groups, vE/[(1 — 2v)(1 + »)] and E/2(]1 +
v}, which appear in (17a) and (175), can be identified as the
Lamé parameters of the conventional theory of linear elas-
ticity [Fung, 1965].

Note that in (174) and (17b), as well as in the equations
governing the groundwater flow and effective stress fields,
the consequence of a uniform pore pressure change is zero,
because such a change leaves dA/dx and dA/dy unchanged.
This shows that (17a) and (175h) can be applied, without

modification, to materials with no groundwater flow, or, if
£, 18 set equal to U, to matenals with no pore water. It also
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Fig. 2. Geometry of the solution domain for the example prob-
lem. Right and left boundaries are symmetry boundaries dictated by
periodic topography. The height of the solution domain is 104 and
is shown in compressed form.

demonstrates that spatially uniform pore pressure increases
do not make rocks and soils more prone to failure. We
consider this inference further when we discuss the solutions
of boundary value problems.

Boundary Conditions

Each of the boundary conditions necessary to solve (15),
(17a), and (17b) reflects one of three basic premises: (1) that
the surface topography is periodic; (2) that there are no
forces acting on the topographic surface; (3) that the influ-
ence of the bottom boundary on displacements, stresses and
groundwater flow near the topographic surface is inconse-
quential if the bottom boundary is at a large but finite depth.

We specify the boundary conditions for solid displace-
ments with reference to Figure 2. The periodic topography
premise requires that there is no horizontal displacement of
the lateral margins of the domain, O-B and A-C. Stated
mathematically, these conditions are

u 0, y)=0 (18a)

Ug(xy, y) =0 (18b)

We quantify the premise of a finite bottom boundary depth
by specifying zero vertical displacement along O-A (Figure
2):

u(x, 0)=90 (18¢)

The final boundary condition for displacements arises from
the requirement that there is no force acting on the topo-
graphic surface. The surface is consequently a traction-free
boundary [Malvern, 1969, p. 499], and for plane strain this

requires that
oulx, Y)n, + oy dx, Y)n, =0 (18d)
onlx, Yin,+ oy (x, Y)n,=0 (18¢)

in which n, and n, are the x and y components of the unit
normal vector directed outward from the topographic sur-
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face and Y is the value of y on the surface. Substitution of
(16a)~(16c) into (184d) and (18¢) results in the traction-free
boundary equations expressed in terms of displacements.
Thoca aanatinne ara ancu tn ohtain hnt are
41V O \-quuuuua alv vasy LU vuvialll vul aiv
we omit them here.

For groundwater flow the periodic topography premise
leads to no-flow boundaries on the lateral margins O-B and

A-C of Figure 2:

vary lanathy on
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(19a)

oh
—(0,y)=0
dx

— (x4, 5)=0 (195)

0x

A no-flow boundary condition is also appropriate for the
deep bottom boundary along O-A of Figure 2:

(19¢)

Finally, the boundary condition along the topographic sur-
face specifies that the head at any point on the surface is
equal to the elevation of that point:

hix, Y)=Y (194)

NUMERICAL SOLUTION

Our method of solving the problem posed by (15}, (17a),
(17b), (18a)-(18¢), and (194)-(19d) employs two Galerkin
finite element models, one for groundwater flow and another
for elastic displacements. For dry hillslopes the body force
field is uniform, and the displacement equations (17a) and
(17b) have hydraulic gradients, 94/3dx and ah/dy, and pore
water density p,, equal to zero. In this case we use the elastic
stress-strain code DLEARN [Hughes, 1987] to obtain ap-
proximate displacement solutions. This code incorporates
bilinear, four-node, quadrilateral, isotropic, elastic contin-
uum elements. Once displacements at each node are ob-
tained, we calculate average strains for each element using
(la)-(1c). We then find effective stresses by applying the
appropriate form of Hooke’s law (16a)-(16c).

For saturated hillslopes our first step in computing effec-
tive stresses is to find the steady state hydraulic head
distribution described by (15). We use the groundwater flow
code MODFE [Torak, 1992] to approximate this distribution.
This code employs linear, three-node, triangular elements.
On the basis of the simulated head distribution we then
compute hydraulic gradients for each element using the
methods described by Pinder et al. [1981]. We determine the
body forces (due to both gravity and seepage) acting on each
stress quadrilateral using weighted averages of the triangular
element hydraulic gradients. Finally, we use DLEARN with
this spatial distribution of body forces to compute the elastic
effective stress field. This procedure is similar to that de-
scribed by Louis et al. [1977].

Figure 2 illustrates the solution domain and boundary
conditions used in each computation. The location of the
bottom boundary deserves special attention because it can
greatly influence the near-surface stress state predicted by

elastic models. With a shallow bottom boundarv having zero
vertical displacement, numerical computations may yield a
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TABLE [. Nondimensionalization of Variables in Effective
Stress Calculations
Nondimensional
Quantity Dimensions Quantity
x, ¥ (length) L x/H, y/H
p, (total bulk density) MIL? P oy
F (total body force) M/LET? Fip,g
aj; (effective stress) MILT? aiilpwgH

zone of near-surface tension near the apex of the slope [e.g.,
Hoyaux and Landanyi, 1972]. With a deeper bottom bound-
ary, numerical computations may yield a zone of near-
surface tension near the toe of the slope [e.g., Zienkiewicz,
1968]. Near-surface tension near the toe also occurs in some
analytical solutions for bottom boundaries at an infinite
depth [e.g., Savage et al., 1985]. Our bottom boundary is
located at a large depth (10 times the slope height), so that
near-surface stress effects are similar to those obtained
analytically for an infinitely deep elastic body.

We investigated the accuracy of our numerical solutions in
two ways: by comparing them with existing analytical solu-
tions for topographically induced stress and by examining
the effects of grid element size. Analytical solutions pre-
sented by Savage et al. [1985) determine the gravitational
stress distribution under an isolated ridge or valley. Apply-
ing appropriate boundary conditions (i.e., boundaries far
removed from the topographic relief), we generated numer-
ical solutions that were very similar to these analyucal
solutions. For the periodic topography shown in Figure | we
solved a series of identical problems with differing grid
element sizes. On the basis of these tests we selected a grid
of 1240 elements for the elastic displacement model and 1210
elements for the groundwater flow model. Near-surface
element dimensions were approximately 1/20 times the slope
height, whereas larger elements were used in the deeper
regions. Displacements computed using these grids were
within 5 percent of those calculated using a grid of 2480
elements.

NUMERICAL RESULTS

Here we present numerical results for a straight hillslope
composed of homogeneous material and inclined 26.6 deg
(2:1 slope). Results for this simple example illustrate basic
influences of groundwater flow on the effective stress field
due to topography. Parameter values for the hillslope mate-
rial are those typical of soil: v = 0.333, p,(dry) = 1590
kg/m3, p,(saturated) = 1990 kg/m3, and p,, = 1000 kg/m3
[cf. Dunn et al., 1980]. Note that because the material is
homogeneous, the value of the hydraulic conductivity K is
inconsequential.

We use three techniques to reduce and present our numer-
ical results: (1) nondimensionalization of variables; (2) con-
version of effective stresses to principal effective stresses;
and (3) expression of Coulomb failure potential by the ratio
of the maximum shear stress to mean effective normal stress.
We nondimensionalize the variables as shown in Table 1.
Note that length is scaled by H, the height of the hillslope
(Figure 2), body forces are scaled by p,g, and effective

stresses are scaled by o..aH. To simplify the succeeding
discussion, the term ‘“‘stress’’ will hereinafter refer to effec-
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Fig. 3. Mohr stress diagram and Coulomb failure envelope for
cases in which normal stresses are compressional but are defined as
positive in tension.

tive stress, and nondimensionalization of this stress is im-
plicit in all computational results.

We use standard relationships to obtain principal stresses
from our computed stresses o', o},. and o}, [Hughes,
19871.

’ ' / ’ Py 2
_ Oxx t oy / Oyx = Oyy ,2
T W) T

(20a)

—_

’ ’ [ 2
O t Tyy U,;x - o'}”y .2
a3 5 - 5 + Tyx

The principal stresses o and o5 represent the maximum and
minimum normal stresses, which act on planes where the
shear stress is zero. The directions in which the principal
stresses act are rotated from the x-y axes by an angle g8:

209,
arctan | —————
Trx = Oyy

Normal and shear stresses on any arbitrarily oriented plane
can be found from the magnitude and orientation of the
principal stresses. Thus the principal stresses provide a
complete picture of the stress field.

Specifically, we are interested in the stresses that influ-
ence the potential for shear failure. Shear failure of cohe-
sionless earth materials is described well by the Coulomb
failure rule, which can be written in the form:

(205h)

B = (20

-

oy =03 Thal

= sin ¢

(22)

ayt oy —o),
where 7/,,, is the maximum shear stress, o, is the mean
normal stress (positive in tension), and ¢ is the angle of
internal friction [Lambe and Whitman, 1979, p. 141]. The
Coulomb rule assumes that the intermediate principal stress
o> does not influence failure. A graphical representation of
(22) and its relationship to other forms of the Coulomb
failure rule are shown by a Mohr diagram in Figure 3. We
neglect the effects of cohesion because they would introduce
scale dependence in our analysis. Moreover, the effects of
cohesion are relatively unimportant for our purposes, be-
cause cohesion is not influenced by groundwater flow.
Determination of the orientation and magnitude of the

stresses acting on a failure plane requires knowledge of the
angle of internal friction. However, the stress ratio |ty |/

(—o},) that appears in the Coulomb failure rule (equation
(22)) can be evaluated without this knowledge. We therefore
define the Coulomb failure potential ® as a dimensionless
measure of shear failure potential:

T Oy

The value of @ is independent of the material strength and
has a theoretical minimum of zero and maximum of one.

An alternate mode of failure exists if either principal stress
is tensile. Then, regardless of shear stress values, cohesion-
less Coulomb materials will fail. In this case the value of &
is unimportant, and we simply identify the affected region as
being tensional.

Stresses in a Dry Hillslope

Figure 4 depicts the principal stresses in a dry elastic
hillslope with a uniform gravitational body force. All stresses
are compressional. The complete solution domain, not all of
which is shown in Figure 4, extends to a depth of 10 times
the hillslope height. Near the surface, the orientation of the
maximum compressive stress roughly parallels the ground
surface. At depth, the direction of maximum compression
becomes vertical, aligned with gravity.

The values of the failure potential ¢ within the same dry
hillslope are contoured in Figure 5. Regions of high ® occur
in a thin band subparallel and adjacent to the ground surface.
Values of ® within this band are approximately uniform,
except at the lateral boundaries where @ is smaller because
of constraints on horizontal displacement.

Body Forces in a Saturated Hillslope

When the same hillslope is saturated, gravity-driven
groundwater flow occurs. The resulting normalized seepage
forces (specified mathematically by —V#h) are portrayed in
Figure 6. These seepage-induced body forces are largest
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Fig. 4. Orientation and magnitude of principal stresses in a dry,
homogeneous, elastic hillstope. All stresses are compressional. The
length of each orthogonal line in the stress symbols equals the
magnitude of the nondimensional stress in that direction multinlied

by a plotting factor of 0.05.
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Fig. 5. Distribution of the Coulomb failure potential & determined

from the dry hillslope stress field of Figure 4.

near the surface and are negligible at depth. All have a
horizontal component oriented downslope. Near the top of
the slope, the seepage forces have a downward vertical
component in the direction of gravitational attraction,
whereas near the toe of the slope, they have an upward
component that acts against gravity.

The combination of seepage body forces with gravitational
and buoyancy body forces produces the net body force field
shown in Figure 7. Although gravity and buoyancy act
vertically downward and upward, respectively, seepage
adds a horizontal component that is most significant near the
ground surface (Figure 6). Seepage has the largest effect on
body forces at the toe of the slope, where it has components
that act both downslope and against gravity.

Stresses in a Saturated Hillslope

The principal stresses in a saturated elastic hilislope with
the body force field of Figure 7 are shown in Figure 8.
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Fig. 7. Nondimensional total body force field in a saturated,
homogeneous hillslope with gravity-driven groundwater flow.

Although these stresses are broadly similar to those in the
dry hillslope (Figure 4), important differences exist. Buoy-
ancy effects reduce the vertical compression throughout the
domain. Because the near-surface seepage forces have a
downslope component, near-surface lateral compression is
larger. In addition, seepage forces rotate the orientation of
the principal stresses, most notably near the toe of the slope.

In the saturated hillslope the failure potential ® generally
exceeds that in the dry slope (Figure 9). Near the slope toe,
where seepage is directed outward, ® is particularly large
and approaches its theoretical maximum of 1. The region
with a high ® value also extends deeper than in the dry
hillslope, and it is shifted in the downslope direction. This
deepening and downslope shifting can be clearly seen by
comparing the 0.7 contours in Figures 5 and 9. All of the
changes in ®@ are caused by seepage effects, because buoy-
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Fig. 8. Principal effective stresses in a saturated, homogeneous,
elastic hillslope with gravity-driven groundwater flow. All stresses
are compressional. The length of each line in the stress symbols
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Fig. 9. Distribution of the Coulomb failure potential ¢ determined
from the saturated hillslope effective stress field of Figure 8.

ancy forces alone merely reduce the apparent weight of the
solids and do not change the magnitude of ®.

The percent increase in & between the dry and saturated
hillslopes is shown in Figure 10. Because there is a horizon-
tal body force component in the saturated case (Figure 7),
values of @ change greatly near the lateral boundaries,
where displacement of adjacent material cannot help distrib-
ute the stress caused by groundwater flow. However, in the
region of interest near the surface of the slope the percent
increase in @ is greatest near the slope toe.

CoNTRAST WITH ONE-DIMENSIONAL ANALYSIS

Some key features of the foregoing results are revealed by
contrasting them with results for an analogous one-
dimensional problem. Such one-dimensional, ‘‘infinite
slope’”’ problems assume that the slope is a free body
unaffected by lateral boundaries and that body forces and

— /T

Fio 1IN

Parcant increace in the failiire natantial b hatwaan dry

and saturated cases (Figures 5 and 9).

Hydraulic

aradiant
gragient

vector

-
-

Fig. 11. Definition of the angular direction (A) and scalar mag-
nitude (|Vh|)) of the hydraulic gradient vector (pointing in the
direction of —V4) in an infinite slope.

effective stresses vary only as functions of a coordinate
oriented normal to the slope surface [Iverson and Major,
1986; Iverson, 1992]. This restricts the variety of groundwa-
ter flow fields that are compatible with an infinite slope
analysis [Iverson, 1990].

Infinite slope analyses are instructive, however, because
they are statically determinate and yield a one-dimensional
Coulomb failure potential ¢, that is both uniform through-
out the slope and closely related to a limit equilibrium factor
of safety. In infinite slopes, potential failure planes must
parallel the slope surface, and the Coulomb failure rule for
cohesionless materials is expressed in terms of the effective
normal and shear stresses on these planes, ¢’ and 7' [Lambe
and Whitman, 1979, p. 141}:

|7'| = o' tan ¢ 24)
We thus define the one-dimensional failure potential &, as

|7’]

D= —r (25)
a
and the factor of safety FS as
o' tan ¢ tan ¢
FS = = (26)

I7'] Dp

The one-dimensional failure potential is analogous, but not
identical, to the two-dimensional failure potential &.

To obtain a more useful expression for ®,,, we use the
results of Iverson and Major [1986] and substitute explicit
expressions for 7 and o' into (25). The resulting equation
applies to saturated infinite slopes with seepage forces of any
magnitude and direction:

_ Updpu) — 1] sin 6 + ||VA| sin A
" Updp,) — 1] cos 8 — IVA| cos A

1D 27)

Here ||V4| is the magnitude and A the angular direction of the
hydraulic gradient vector, and 6 is the slope angle (Figure
11). For infinite slopes with a water table at the ground
surface it is necessary that |[VA| = |sin &/sin A|; and for
saturated flow it is necessary that 0 < A < 180° — @ [Iverson,
1992]. Under these constraints, (27) simplifies to

&, =[cot @ — (p,/p)(cot & + cot A)] ! (28)

Figure 12 depicts solutions of (27), as well as the solution

of (28). for an infinite slobe with the same inclination (8 =
26.6°) and mass-density ratio (p,/p,, = 1.99) used in our
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Fig. 12. One-dimensional Coulomb failure potential &, as a
function of the direction and magnitude of the hydraulic gradient
vector in an infinite slope with p,/p,, = 1.99, slope angle 6 = 26.6°,
and uniform groundwater flow. Solid lines represent solutions of (27)
for all possible values of A, with |[VA|| < 0.8. Heavy dashed line
represents solution of equation (28), which incorporates the restric-
tion that a water table boundary exists at the ground surface.
Solutions of (28) indicate that &, grows without bound as A
diminishes toward 26.9°.
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two-dimensional example (Figures 6-10). These solutions
show how the Coulomb failure potential &, varies as a
function of the magnitude and direction of the hydraulic
gradient. If groundwater flow is vertically upward (A =
—26.6°) or downward (A = 153.4°) Figure 12 shows that the
seepage force merely changes the apparent weight of the
solids and does not influence the Coulomb failure potential.
However, if groundwater flow has a downslope component,
as it does throughout the domain in our two-dimensional
example (Figure 6), Figure 12 shows that the failure potential
is increased. Moreover, the influence of seepage on the
one-dimensional failure potential is far greater than in the
two-dimensional case. Seepage forces similar to those near
the toe of the slope in Figure 6 (for example, A = 35°, {|V4||
= 0.8), would produce a one-dimensional failure potential
that exceeded the dry-slope potential by more than 600%.
Instead, such seepage forces increase the failure potential by
only about 40% in the two-dimensional case (Figure 10). This
smaller effect on failure potential results from the spatial
variability of the two-dimensional groundwater flow and
stress fields; continuity of these fields helps restrain the
material in zones where the failure potential would otherwise
be extremely high.

DiscussioN

This discussion focuses first on some general inferences
about groundwater effects on stress distributions and failure
potentials in hillslopes. Then, we discuss our use of linear
elasticity for modeling stresses and our use of ® for evalu-
ating failure potential, and we contrast this approach with
some alternative approaches. We explain why caution
should be used in drawing unequivocal conclusions on the
basis of our model results.

The principal result of our numerical computations is a
conceptual picture of how groundwater flow modifies static
effective stresses in hillslopes. As a backdrop for this pic-

turo, thoe hady foarco tarme in tha gnuvarning amquatinne chawr

that spatially uniform changes in pore pressure do not

influence the effective stress state or failure potential, Con-
sequently, the idea that high pore pressures cause slope
failure can be very misleading. Instead, it is the distribution
of pore pressures that deviate from hydrostatic that infiu-
ences failure potential. The effects of this distribution are
represented by the direction and magnitude of seepage
forces.

Our results also show that groundwater flow fields influ-
ence both shear stresses and effective normal stresses. This
contradicts the view, apparently derived from effective
stress definitions such as (8) or (11), that pore fluid pressures
affect only normal stresses {e.g., Hubbert and Rubey, 1959].
Although pore fluid can support no static shear stress itself,
flowing pore fluid can impart static shear stress to the solids.
This effect can be appreciated on an intuitive level by
considering the net body force field that exists when gravity-
driven groundwater flow occurs (Figure 7). Because the
groundwater flow field produces curvature of the net body
force field, the porous medium sustains stresses that include
shear as well as normal components. Definitions of effective
stress do not reveal this effect. Solutions to boundary value
problems, either in terms of seepage forces, as we have
presented here, or in terms of pore pressure distributions,
must be examined to evaluate groundwater effects on effec-
tive stress fields.

For straight hillslopes composed of homogeneous material
our effective stress and failure potential calculations show
that a rational expectation is for failures to be shallow,
involving only material near the slope surface. In this
near-surface region, both shear and normal stresses are
strongly influenced by the traction-free boundary condition
at the ground surface. In addition, gravity-driven groundwa-
ter flow increases the failure potential in the near-surface
region, and the increases are largest near the toe of the slope.
This is a consequence of seepage forces directed outward
from the slope near the toe; it suggests that slope failure
might be expected to nucleate in this region.

Localized effects of groundwater flow on failure potential
are less pronounced, however, than might be expected on
the basis of solutions to analogous one-dimensional prob-
lems [e.g., Iverson and Major, 1986; Iverson, 1992]. In
one-dimensional problems, seepage and attendant stress
field modification uniformly affect a mechanically isolated
domain. In contrast, our two-dimensional solutions must
satisfy compatibility conditions and boundary constraints on
displacements and groundwater flow. No part of the solution
domain is isolated from any other part, and the contiguity of
all parts mediates the localized influences of groundwater
flow.

The role of domain contiguity points to contrasts between
our approach and the commonly used limit equilibrium
method of slope stability analysis. Our approach uses the
distribution of elastic stresses to evaluate the effect of
groundwater flow on the distribution of Coulomb failure
potential ® in a continuous domain. Inferences about
groundwater effects on the failure potential are broadly
applicable because there are no assumptions about failure
plane locations or material frictional strength. However, the
failure potential ® cannot be translated directly into factor-
of-safety and failure surface predictions.

If factors of safety for potential failure surfaces are de-

cirad. tha ~suctamary appranch ic imit aquiliheium analgeic

Such analyses have great engineering utility, but they yield a
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limited view of groundwater influences on effective stress
states because they assess only the net force balance on an
isolated piece of a slope. This isolated free body is separated
from the rest of the slope by an assumed failure surface, and
the state of stress and pore water pressures at locations not
on the failure surface are inconsequential. Zones inside or
outside the failure surface that may be weakened by the
effects of groundwater flow are irrelevant. Thus despite its
advantages for practical assessments of slope stability, limit
equilibrium analysis yields no coherent picture of groundwa-
ter effects that is comparable to our Figure 10.

Our stress field calculation method requires that rock or
soil deformation is linearly elastic prior to failure. Responses
of soil and rock to short-term stresses are typically both
linear and elastic [Jaeger and Cook, 1979], but responses to
long-term loads may include creep deformation and concom-
itant stress relaxation. Our model does not include such
time-dependent effects; it assumes that a landscape exists
independent of its constructional or erosional history, that
the only force affecting the landscape is the time-in-
dependent action of gravity, and that stresses and ground-
water flow equilibrate to this gravitational force instanta-
neously and permanently.

The validity of such time-independent elastostatic stress
calculations has been questioned by McGarr [1987, 1988],
who argued that basic modeling assumptions, particularly
“switching on’’ gravity after lithification and imposing lat-
eral constraints on displacement, do not mimic the evolution
of earth materials. He suggested that a lithostatic stress state
might be more appropriate. However, stress measurements
near the Earth’s surface are equivocal; horizontal stresses
may be lower, equal to, or higher than vertical stresses [e.g.,
Hooker et al., 1972; McGarr and Gay, 1978; Jaeger and
Cook, 1979; Swolfs and Savage, 1985]. In light of this
evidence, care should be taken in interpreting any stress field
calculations, including our own. Nonetheless, our assump-
tion of stresses governed by linear elasticity combines the
advantages of being explicit, simple, and mechanically ration-
al. Moreover, our focus is on modification of stress fields by
groundwater flow and not on precise determination of the
stress state. It is in this context that we believe our results
have their greatest value.

CONCLUSIONS

The results of this study support the following conclu-
sions. The first three conclusions are general; their applica-
bility is demonstrated by equations that do not depend on
any of our assumptions about elastic material behavior or
our definition of failure potential. The last four conclusions
are more specific and depend on our modeling assumptions.

1. Spatially uniform pore pressure changes, which have
no influence on groundwater flow, also have no influence on
effective stress distributions and failure potential in hill-
slopes. This is true regardless of pore pressure magnitudes.

2. Gravity-driven groundwater flow produces a spatially
variable body force field that influences the effective stress
distribution in hillslopes.

3. Shear stresses, as well as effective normal stresses, in
a porous medium can be influenced by groundwater flow.

4. A general picture of groundwater effects on slope

failure potential, which avoids the assumptions of limit
equilibrium analysts, can be obtained by evaluating elastic

effective stresses and calculating the distribution of the
failure potential ® throughout the slope.

5. Gravitational effects, by themselves, produce elastic
stresses with magnitudes and orientations that are influenced
by topography. Failure potentials due to these gravitational
stresses show that near-surface failures are a rational expec-
tation for straight, homogeneous slopes with no groundwater
flow.

6. In straight, homogeneous slopes the failure potential
is increased in near-surface parts of the slope as a result of
gravity-driven groundwater flow. The increases are particu-
larly significant near the slope toe, where seepage forces are
strong and directed outward.

7. Increases in failure potential caused by gravity-driven
groundwater flow in a two-dimensional slope are less pro-
nounced than might be anticipated on the basis of infinite
slope limit equilibrium calculations. This reflects the influ-
ence of compatibility, continuity, and boundary constraints
on the two-dimensional groundwater flow and stress fields.

APPENDIX A: STEADY STATE DECOUPLING

This appendix shows that under steady state conditions
the equations that govern flow of a homogenous, incom-
pressible fluid in a heterogeneous, poroelastic medium de-
couple from the equations that govern the solid-state stress
field. The derivation focuses on the case of two-dimensional
flow and plane strain considered in this paper, but it can
easily be generalized to three dimensions.

As a starting point, we consider the poroelastic constitu-
tive equations for plane strain derived by Rice and Cleary
[1976, equation (20)), which are valid for fully coupled solid
and fluid deformation. The first of their equations is a slightly
different form of (BS) presented in this paper; it differs in that
it does not require the assumption of incompressible pore
fluid. The second of their equations relates the mass of pore
fluid contained in a representative volume of the porous
medium to the state of stress:

Ipolvy, — v) ( . )4 3p*
m-—mpy= — - [ —
0T 3GBU + vy | 7T T T B ¥ vy

(A1)
Here », is the undrained Poisson’s ratio of the porous
medium, B is Skempton's pore-pressure coefficient for the
medium, m is the mass of pore fluid per unit volume of the
medium, mg is a constant value of m measured at some
reference state, and p, is a constant value of p,. measured at
the same reference state. We assume that the pore fluid is
incompressible so that p, = p,, everywhere. The symbol p*
denotes the nonequilibrium pore fluid pressure, which is
related to the hydraulic head 4 and total pore pressure p by
p*=p.gh=p+p.gy (A2)
Thus p* reflects the total mechanical potential of the pore
fluid. Note that body forces are omitted by Rice and Cleary’s
[1976] derivation, so that they use p* = p.
Using p* as given by (A2) as the dependent variable,
Darcy's law can be employed in the form

ap*

q;= —(K/q) o (A3)
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in which g; is the fluid mass flux per unit area of porous
medium. Conservation of pore fluid mass during transient
flow is then expressed by

aom

dq;

v, Ar
0X; Gi

(A4)

in which ¢ represents time. Substitution of (A1) and (A3) into
(A4) then yields a diffusion equation for transient flow of
homogeneous fluid in a heterogeneous poroelastic medium

3 *

(A3)

+o,,)+t———m———
[(U” T
In (AS) the time derivative, which operates on both the
stress field and the pore pressure field, vanishes under
steady state conditions. Thus for steady state we have

1 9 ap*

— —1|K =0
pog 0x; ax;

Employing (A2) and the relation p; = p,,, and writing the x
and y direction derivatives explicitly, (A6) reduces to

ad dh 0 dh
—[K—|+—(|K—]|=0
ox dax ay ay

This equation is the same as (15) for steady groundwater flow
given in the main text. Effects of poroelastic coupling on
fluid flow, which are commonly important in transient prob-
lems [Roeloffs, 1988], consequently are irrelevant in the
steady state problems we consider here. Numerical analysis
can therefore proceed by first determining the groundwater
flow field, which subsequently serves as input for determin-
ing the elastic stress field.

(A6)

(A7)

APPENDIX B: CONSTITUTIVE EQUATIONS

This appendix shows how constitutive equations similar to
(9a)~(9c¢) are obtained from the poroelastic constitutive
equations of Biot [1941], as recast by Rice and Cleary [1976].
The three-dimensional constitutive equation (equation (1)) of
Rice and Cleary [1976] is

1 v

=5 Tt P8y - (op +3p)8y; —

1+ 8y

G
3k P

(B1)

in which G is the shear modulus of the solid porous medium
and the other variables and moduli are defined as in the main
text. The indices i, j, and k& represent the coordinates x, y,
and z, and the summation convention applies to repeated /,
J, k indices. The modulus K, defined by Rice and Cleary
differs somewhat from K, the bulk modulus of the solid
constituents defined in the main text. However, we assume
here that all pore spaces in the solid are interconnected and
permit fluid flow, which implies that K = K, [Rice and
Clonvy. 107A]

A well-known identity relates the shear modulus to the
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bulk modulus and Poisson’s ratio of the solid skeleton [cf.
Fung, 1965, p. 129]:

2G 1-2v

J—" Kh

3 1+ v
Substituting (B2) into (B1) and manipulating the resulting
terms produces

I Ks
{ AR

|
[ 4 i b
- + 311 - 8,
1+ v ‘\Ukk L Ks)pJ lj} (B3)

Applying the plane strain definition, £,; = 0, reduces (B3) to
the following expression for the out-of-plane stress o,.:

K, v K,
o, = ]—l—<: p+]+—y o'x.r+0'y_v+o':z+3 I_E p

- + =21
= V(0 (fyy) ( v) —K 14

5

(B2)

(B4)

This equation is the total stress equivalent of the effective
stress equation for plane strain (10) used in the main text.
Substituting (B4) into (B3) vyields, after some algebraic
manipulation,

|
E4=

K,
i =56 o= o+ o, )8+ (1~ ZV)(I - E)p6,j}

(BS)

This is the general constitutive equation for plane strain.

Conversion of (B5) into a form very similar to that of
(9a)-(9¢) is then accomplished by using the definition
[Fung, 1965, p. 129]:

E

Note that this definition of the shear modulus identifies it as
one of the Lame parameters that appear in the equations
governing solid displacements (17«) and (176). Substituting
(B6) into (B5), and writing the x and y component equations
explicitly then gives, for the normal and shear strains,

Exy = -E- [(I - uz)(r“. —v(l + u)cr),).

Ky
+(1+ )1 - 2u)(1 - -k—)p] (B7a)

§

(1 — 1)2)0'_‘,_v - vl + v)o,,

My -

£ o

K,
+ {14+ »)(1 - 211)(1 —'K—)p} (B7b)
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The close analogy between these equations, which govern
total stresses, and (9a)-(9¢), which govern effective
stresses, is apparent. It is easy to show that substitution of
the Nur and Byerlee [1971] effective stress definition (8) into
(9a)-(9¢) yields (B7a)—-(B7¢) as equivalent expressions.

NOTATION

B Skempton’s pore pressure coeflicient for the solid
porous medium, dimensionless;

E Young’s modulus of the solid porous medium,
M/LT?;

F total body force, M/L2T?;

g magnitude of the gravitational acceleration
vector, L/T?;

g; icomponent of the gravitational acceleration
vector, L/T?;

{; <hear modulucg of the <solid
o sagar moQGuius o1 g sGulG

MILT?;

h total groundwater head, L;

H hillslope height, L;

4 dummy indices that represent the coordinates x,
y and z;

K hydraulic conductivity, L/T;

K, bulk modulus of the solid porous medium,

M/LT?;

K, bulk modulus of the individual solid constituents,
MILT?;

K'; bulk modulus defined by Rice and Cleary [1976],
MILT?,

m mass of pore water per unit volume of porous
medium, M/L?>;
mqy value of m at reference state, M/L?;
n; i component of the unit normal vector directed
outward from the slope surface, L;
p pore water pressure, M/LT?;
* nonequilibrium pore water pressure, M/LT>;
g; i component of the fluid mass flow rate per unit
area of porous medium, M/L>T;
t time, T,
i component of the solid porous medium
displacement vector, L;
x, y, z Cartesian coordinates, L;
x4 value of x along right boundary of solution
domain, L:
Y wvalue of y along topographic surface, L;
a coefficient in effective stress definition,
dimensionless;
B angle between directions of principal stress action
and the x-y axes, dimensionless;

d; Kronecker delta (= | wheni = jand = 0
otherwise), dimensionless;
g; component of the infinitesimal solid strain tensor,

dimensionless;
¢ angle of internal friction, dimensionless;
@& Coulomb failure potential, dimensionless;

®,;, one-dimensional Coulomb failure potential,
dimensionless;
A angular direction of hydraulic gradient vector,
dimensionless;

v drained Poisson’s ratio of the porous medium,
dimensionless;

vy wadiained Poivoon's vativ of the purvus mediva,

dimensionless;
6 slope angle, dimensionless;
p, total mass density of the solid-fluid mixture,
MIL?Y;
p. mass density of pore water, M/L?;
po mass density of pore water at reference state,
MIL?;
o; component of the total stress tensor, M/L T
a;; component of the effective stress tensor, M/L T2
o' effective normal stress in infinite slope, M/LT?;
major and minor principal effective stresses,
M/LT?;
o,, mean effective normal stress, M/LT?;
7 shear stress in infinite slope, M/LT?;
maximum shear stress, M/LT?;
V gradient operator, 1/L;
Vv? Laplacian operator, 1/L2.
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